Как найти давление масла на поршни

Как найти давление масла на поршни

Учебник Физика 7 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 страниц вышел из печати в июле 2015 г. в пятом издании. Учебник физики 7 класса рассчитан на 2 урока в неделю и содержит 6 тем курса физики, которые перечислены ниже.

Физика 7 класс, тема 01. Физические величины (7+2 ч)
Физика. Физическая величина. Измерение физических величин.
Цена делений шкалы прибора. Погрешность прямых и косвенных измерений.
Формулы и вычисления по ним. Единицы физических величин.
Метод построения графика. Физика 7 класс, тема 02. Масса и плотность (8+1 ч)
Явление тяготения и масса тела. Свойство инертности и масса тела.
Плотность вещества. Таблицы плотностей некоторых веществ.
Средняя плотность тел и их плавание.
Метод научного познания. Физика 7 класс, тема 03. Силы вокруг нас (13+2 ч)
Сила и динамометр. Виды сил.
Уравновешенные силы и равнодействующая.
Сила тяжести и вес тела. Сила упругости и сила трения.
Закон Архимеда. Вычисление силы Архимеда.
Простые механизмы. Правило равновесия рычага. Физика 7 класс, тема 04. Давление тел (10+0 ч)
Определение давления. Давление жидкости. Закон Паскаля. Давление газа.
Атмосферное давление. Барометр Торричелли. Барометр-анероид.
Вакуумметры. Манометры: жидкостные и деформационные.
Пневматические и гидравлические механизмы. Физика 7 класс, тема 05. Работа и энергия (9+1 ч)
Механическая работа. Коэффициент полезного действия. Мощность.
Энергия. Кинетическая и потенциальная энергия.
Механическая энергия. Внутренняя энергия.
Взаимные превращения энергии. Физика 7 класс, тема 06. Введение в термодинамику (15+2 ч)
Температура и термометры. Количество теплоты и калориметр.
Теплота плавления/кристаллизации и парообразования/конденсации.
Первый закон термодинамики. Двигатель внутреннего сгорания.
Теплота сгорания топлива и КПД тепловых двигателей.
Теплообмен. Второй закон термодинамики.

Учебник Физика 8 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в четвёртом издании. Учебник физики 8 класса рассчитан на 2 урока в неделю и содержит 5 тем курса физики, которые перечислены ниже.

Физика 8 класс, тема 07. Молекулярно-кинетическая теория (8+1 ч)
Из истории МКТ. Частицы вещества. Движение частиц вещества.
Взаимодействие частиц вещества. Систематизирующая роль МКТ.
Кристаллические тела. Аморфные тела. Жидкие тела. Газообразные тела.
Агрегатные превращения. Насыщенный пар. Влажность воздуха. Физика 8 класс, тема 08. Электронно-ионная теория (8+1 ч)
Строение атомов и ионов. Электризация тел и заряд.
Объяснение электризации. Закон сохранения электрического заряда.
Электрическое поле. Электрический конденсатор. Электрический ток.
Электропроводность жидкостей, газов и полупроводников. Физика 8 класс, тема 09. Постоянный электрический ток (13+2 ч)
Электрическая цепь. Сила тока. Электрическое напряжение. Работа тока.
Закон Ома для участка цепи. Сопротивление соединений проводников.
Закон Джоуля-Ленца. Электронагревательные приборы.
Полупроводниковые приборы. Переменный ток. Физика 8 класс, тема 10. Электромагнитные явления (8+1 ч)
Магнитное поле. Соленоид и электромагнит. Постоянные магниты.
Действие магнитного поля на ток. Электродвигатель на постоянном токе.
Электромагнитная индукция. Электротрансформатор. Передача электроэнергии.
Электродвигатель на переменном токе. Физика 8 класс, тема 11. Колебательные и волновые явления (9+2 ч)
Период, частота и амплитуда колебаний. Нитяной и пружинный маятники.
Механические волны. Свойства механических волн. Звук.
Электромагнитные колебания. Излучение и прием электромагнитных волн.
Свойства электромагнитных волн. Принципы радиосвязи и телевидения.

Учебник Физика 9 класс Кривченко И.В., размещённый в этой рубрике, включён в федеральный перечень учебников в соответствии с ФГОС. Учебник в цветном полиграфическом исполнении с твёрдым переплетом объёмом 150 стр. вышел из печати в июле 2015 г. в третьем издании. Учебник физики 9 класса рассчитан на 2 урока в неделю и содержит 4 темы курса физики, которые перечислены ниже.

Физика 9 класс, тема 12. Введение в кинематику (16+2 ч)
Что такое кинематика. Относительность движения. Путь и перемещение.
Сложение и вычитание векторов. Проекции векторов на координатные оси.
Равномерное движение. Мгновенная скорость. Равноускоренное движение.
Графическое описание движений. Равномерное движение по окружности. Физика 9 класс, тема 13. Введение в динамику (13+2 ч)
Что такое динамика. Первый, второй и третий законы Ньютона.
Законы Гука и Кулона-Амонтона. Закон всемирного тяготения.
Закон сохранения импульса. Реактивное движение.
Кинетическая энергия. Потенциальная энергия. Физика 9 класс, тема 14. Введение в оптику (11+1 ч)
Источники света. Прямолинейное распространение света. Отражение света.
Зеркала. Преломление света. Линзы. Оптические приборы.
Дисперсия света и цвета тел. Фотография и полиграфия.
Корпускулярно-волновой дуализм. Физика 9 класс, тема 15. Введение в квантовую физику (7+1 ч)
Физика XX века. Явление радиоактивности. Регистрация частиц.
Строение атома. Характеристики атомного ядра. Ядерные реакции.
Природа и свойства радиоактивных излучений. Энергия связи ядра.
Энергия ядерных реакций. Ядерная энергетика. Физика XXI века.

Для перехода к параграфам кликайте нумерацию 01 02 03 04 05 и т.д. вверху страницы. Параграфы каждой темы курса физики снабжены интерактивными вопросами и заданиями.

Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей

Источник

2.2 Определение силы давления на поршень. Индикаторную диаграмму строим по заданной таблице значений давления в цилиндре двигателя. Таблица 4.

Таблица значений давления в цилиндре двигателя

Отрезок хода поршня НВ на листе делим на 10 интервалов, дополнительно для точности построения разделим первый интервал . В каждой точке деления строим ординату диаграммы в масштабе =10 -4 мм/Па. Максимальное давление pmax=990 кПа.

Для определения силы давления на поршень Fд необходимо давление умножить на площадь поршня. При построении графика силы, действующей на поршень, ординаты этого графика принимаем равными ординатам индикаторной диаграммы. =0,018 мм/Н.

Где площадь поршня Sп=,Sп =5,02*10 -3 м 2

Положительные значения силы Fд соответствуют положительному знаку работы, а отрицательные-отрицательному знаку.

2.3. Построение графиков приведённых моментов.

Суммарный приведенный момент является суммой приведенного движущего момента Mд пр и приведенного момента сопротивления Mс пр . Для определения Мд пр воспользуемся формулой Мд пр =Fд |VQB|. Сила Fд определяется по формуле Fд=

Где yF -ордината с индикаторной диаграммы, мм; -масштаб сил, мм/Н.

График строится по точкам (24 положения) для 3-го цилиндра.

Для другого цилиндра график получается путем сдвига графика на 360 o .

Для построения графика Мд пр () определяем ординаты с шагом=30 o

Числовые данные для построения приведены в таблице 5:

Источник

Гидравлический пресс

Насос — это не единственное устройство, принцип работы которого построен на явлении давления жидкости и газов. Большое количество гидравлических машин повсеместно используется человеком.

На данном уроке вы узнаете, что представляет из себя гидравлическая машина и гидравлический пресс, узнаете об их устройстве и принципе работы.

Гидравлическая машина

Чтобы рассмотреть устройство гидравлического пресса, сначала дадим определение гидравлической машины.

Определение

Гидравлическая машина (от греческого «гидравликос» — «водяной») — это машина, действие которой основано на законах движения и равновесия жидкостей и объясняется законом Паскаля.

Устройство

Гидравлическая машина в основе представляет собой два цилиндра разного диаметра, в каждом из которых имеется поршень (рисунок 1). Цилиндры соединены между собой трубкой и заполнены жидкостью (чаще всего минеральным маслом).

Принцип работы

Цилиндры представляют собой сообщающиеся сосуды, высота столба жидкости в них будет одинакова, пока поршни находятся в состоянии покоя.

Теперь рассмотрим ситуацию, когда на поршни действуют некоторые силы $F_1$ и $F_2$. При этом $S_1$ и $S_2$ — площади поршней. По определению давления мы уже знаем, что $p = \frac$.

Тогда давление, оказываемое меньшим поршнем, определяется по формуле:
$p_1 = \frac$.

А давление, оказываемое большим поршнем:
$p_2 = \frac$.

Эти сосуды соединены между собой. Значит, по закону Паскаля:
$p_1 = p_2$ или
$\frac = \frac$.

Разделим каждую часть равенства на $F_1$ и умножим на $S_2$, чтобы получить необходимую формулу.

Сила $F_2$ больше силы $F_1$ во столько раз, во сколько раз площадь большего поршня $S_2$ больше площади меньшего $S_1$:
$\frac = \frac$.

Например, если площадь большого поршня $300 \space см^2$, а маленького $3 \space см^2$ и на него действует сила $100 \space Н$, то на большой поршень будет действовать сила $10 \space 000 \spaceН$:
$\frac<10 \space 000 Н><100 \space Н>=\frac<300 \space см^2><3 \space см^2>$.

Показательное отношение $\frac$ называют выигрышем в силе. Другими словами, с помощью гидравлической машины можно малой силой уравновесить большую силу.

Гидравлический пресс

Определение

Гидравлический пресс — это гидравлическая машина, служащая для сдавливания (прессования).

Гидравлические прессы (рисунок 2) эффективно работают для преобразования малой силы в большую. Они используются для спрессовывания семян при изготовлении масла, для склеивания строительных материалов, для штамповки ювелирных изделий. Современные гидравлические прессы могут развивать силу в сотни миллионов ньютонов.

Устройство и принцип работы

Рассмотрим устройство гидравлического пресса (рисунок 3).

Усложняем схему устройства гидравлической машины. Теперь над большим поршнем 2 имеется платформа, куда мы помещаем прессуемое тело 1.

С помощью малого поршня 3 мы создаем большое давление на жидкость. Оно также начинает действовать на поршень 2. Происходит это потому, что давление передается без изменения в каждую точку жидкости (закон Паскаля).

Площадь поршня 2 больше площади поршня 3. Поэтому и сила, действующая на него, будет больше (давление одинаковое). Под действием этой силы поршень 2 начинает подниматься и придавливает прессуемое тело к неподвижной верхней платформе.

Здесь же установлен манометр 4 для контроля давления жидкости и предохранительный клапан 5. Клапан автоматически открывается, когда давление превышает максимально допустимое в данном устройстве значение.

При повторяющихся движениях поршня 3 жидкость снова попадает из малого цилиндра в большой. Малый поршень поднимается и открывается клапан 6. Тогда пространство под поршнем моментально заполняется жидкостью. Когда же малый поршень 3 опускается, клапан 6 закрывается под давлением жидкости, а клапан 7 открывается. Так жидкость снова оказывается в большом сосуде.

Гидравлический тормоз

Еще одной известной разновидностью гидравлических машин является гидравлический тормоз. На данный момент практически все автомобили оснащены гидравлическими тормозами.

На рисунке 4 изображена схема автомобильного гидравлического тормоза, где 1 — тормозная педаль, 2 — цилиндр с поршнем, 3 — тормозной цилиндр, 4 — тормозные колодки, 5 — пружина, 6 — тормозной барабан. Цилиндры и трубки заполнены специальной жидкостью. Рассмотрим принцип работы этого устройства.

Водитель ногой создает давление на педаль тормоза 1. Это действие передается на поршень цилиндра с тормозной жидкостью 2. По закону Паскаля это давление передается одинаково во все тормозные цилиндры колес автомобиля. Под давлением жидкости подвижные поршни, находящиеся в тормозном устройстве 3, расходятся и прижимают тормозные колодки 4 к тормозному барабану 6 — вращение колес прекращается. Пружина 5 позволяет колодкам вернуться в исходное состояние, когда водитель убирает ногу с педали тормоза.

Гидравлический домкрат

Другое распространенное устройство — гидравлический домкрат (рисунок 5). Принцип действия домкрата идентичен принципу действия гидравлического пресса, но с помощью него можно поднимать очень тяжелые предметы.

Жидкостью здесь выступает гидравлическое масло, а также имеется нагнетательный и спускной клапаны.

Упражнения

Упражнение №1

На рисунке 6 изображена упрощенная схема гидравлического подъемника (разновидности гидравлического домкрата), где 1 — поднимаемое тело, 2 — малый поршень, 3 — клапаны, 4 — клапан для опускания груза, 5 — большой поршень. Груз какой массы можно поднять такой машиной, если известно, что площадь малого поршня $1.2 \space см^2$, большого — $1440 \space см^2$, а сила, действующая на малый поршень, может достигать $1000 \space Н$? Трение не учитывать.

Дано:
$S_1 = 1.2 \space см^2$
$S_2 = 1440 \space см^2$
$F_1 = 1000 \space Н$
$g = 9.8 \frac<Н><кг>$

Посмотреть решение и ответ

Решение:

Гидравлический подъемник является разновидностью гидравлической машины. Поэтому мы можем использовать следующее равенство, которое мы получили на данном уроке:
$\frac = \frac$,
где $F_2 = gm$ — сила, с которой поднимаемое тело действует на большой поршень.

Выразим массу груза и рассчитаем ее:
$\frac = \frac$,
$m = \frac$,
$m = \frac<1000 \space Н \cdot 1440 см^2><9.8 \frac<Н> <кг>\cdot 1.2 \space см^2> \approx 122 \space 000 \space кг \approx 120 \space т$.

Ответ: $m = \approx 120 \space т$.

Упражнение №2

В гидравлическом прессе площадь малого поршня $5 \space см^2$, площадь большого — $500 \space см^2$. Сила, действующая на малый поршень, равна $400 \space Н$, на большой — $36 \space кН$. Какой выигрыш в силе дает этот пресс? Почему пресс не дает максимального (наибольшего) выигрыша в силе? Какой выигрыш в силе должен был бы давать этот пресс при отсутствии силы трения между поршнем и стенками пресса?

Дано:
$S_1 = 5 \space см^2$
$S_2 = 500 \space см^2$
$F_1 = 400 \space Н$
$F_2 = 36 \space кН = 36 \space 000 \space Н$

Посмотреть решение и ответ

Решение:

Рассчитаем реальный выигрыш в силе, который мы получаем при использовании данного гидравлического пресса:
$\frac = \frac<36 \space 000 Н> <400 \space Н>= 90$.
Получается, что мы имеем выигрыш в силе в 90 раз.

Но в реальной жизни при движении поршней возникает сила трения. Какой выигрыш в силе мы бы получили, если бы ее не было?
Используем соотношение площадей поршней:
$\frac = \frac<500 \space см^2> <5 \space см^2>= 100$.
Это максимальный выигрыш в силе, который бы мы получили при отсутствии силы трения между поршнями и стенками пресса.

Ответ: $\frac =90$, $\frac = 100$.

Упражнение №3

Можно ли создать машину, подобную гидравлической, используя вместо воды воздух? Ответ обоснуйте.

Ответ:

Гидравлические машины действуют на основе закона Паскаля. А этот закон применим не только для жидкостей, но и для газов. Поэтому, да, такую машину можно создать.

Примером подобной машины может служить пневматическая подвеска автомобиля.

Источник

О масле
Adblock
detector